:mod:`bitbangio`
================
.. py:module:: bitbangio
.. autoapi-nested-parse::
Digital protocols implemented by the CPU
The `bitbangio` module contains classes to provide digital bus protocol
support regardless of whether the underlying hardware exists to use the
protocol.
First try to use `busio` module instead which may utilize peripheral
hardware to implement the protocols. Native implementations will be faster
than bitbanged versions and have more capabilities.
All classes change hardware state and should be deinitialized when they
are no longer needed if the program continues after use. To do so, either
call :py:meth:`!deinit` or use a context manager. See
:ref:`lifetime-and-contextmanagers` for more info.
For example::
import bitbangio
from board import *
i2c = bitbangio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()
This example will initialize the the device, run
:py:meth:`~bitbangio.I2C.scan` and then :py:meth:`~bitbangio.I2C.deinit` the
hardware. The last step is optional because CircuitPython automatically
resets hardware after a program finishes.
.. raw:: html
Available on these boards
- AITHinker ESP32-C3S_Kit
- ARAMCON Badge 2019
- ARAMCON2 Badge
- ATMegaZero ESP32-S2
- Adafruit CLUE nRF52840 Express
- Adafruit Circuit Playground Bluefruit
- Adafruit Circuit Playground Express 4-H
- Adafruit CircuitPlayground Express
- Adafruit EdgeBadge
- Adafruit Feather Bluefruit Sense
- Adafruit Feather ESP32-S2 TFT
- Adafruit Feather ESP32S2
- Adafruit Feather M4 CAN
- Adafruit Feather M4 Express
- Adafruit Feather MIMXRT1011
- Adafruit Feather RP2040
- Adafruit Feather STM32F405 Express
- Adafruit Feather nRF52840 Express
- Adafruit FunHouse
- Adafruit Grand Central M4 Express
- Adafruit Hallowing M4 Express
- Adafruit ItsyBitsy M4 Express
- Adafruit ItsyBitsy RP2040
- Adafruit ItsyBitsy nRF52840 Express
- Adafruit KB2040
- Adafruit LED Glasses Driver nRF52840
- Adafruit Macropad RP2040
- Adafruit MagTag
- Adafruit Matrix Portal M4
- Adafruit Metro ESP32S2
- Adafruit Metro M4 Airlift Lite
- Adafruit Metro M4 Express
- Adafruit Metro nRF52840 Express
- Adafruit Monster M4SK
- Adafruit PyGamer
- Adafruit PyPortal
- Adafruit PyPortal Pynt
- Adafruit PyPortal Titano
- Adafruit Pybadge
- Adafruit QT Py ESP32S2
- Adafruit QT Py RP2040
- Adafruit QT2040 Trinkey
- Adafruit Trellis M4 Express
- AloriumTech Evo M51
- Arduino Nano 33 BLE
- Arduino Nano RP2040 Connect
- Artisense Reference Design RD00
- AtelierDuMaker nRF52840 Breakout
- BDMICRO VINA-D51
- BLE-SS dev board Multi Sensor
- BastBLE
- BastWiFi
- BlueMicro840
- CP32-M4
- Capable Robot Programmable USB Hub
- Challenger NB RP2040 WiFi
- Challenger RP2040 LTE
- Challenger RP2040 WiFi
- Circuit Playground Express Digi-Key PyCon 2019
- CircuitBrains Deluxe
- CrumpS2
- Cytron Maker Nano RP2040
- Cytron Maker Pi RP2040
- DynOSSAT-EDU-OBC
- ESP 12k NodeMCU
- Electronut Labs Blip
- Electronut Labs Papyr
- EncoderPad RP2040
- Espruino Pico
- Espruino Wifi
- Feather ESP32S2 without PSRAM
- Feather MIMXRT1011
- Feather MIMXRT1062
- FeatherS2
- FeatherS2 Neo
- FeatherS2 PreRelease
- Franzininho WIFI w/Wroom
- Franzininho WIFI w/Wrover
- Gravitech Cucumber M
- Gravitech Cucumber MS
- Gravitech Cucumber R
- Gravitech Cucumber RS
- HMI-DevKit-1.1
- HiiBot BlueFi
- IMXRT1010-EVK
- IkigaiSense Vita nRF52840
- Kaluga 1
- LILYGO TTGO T8 ESP32-S2 w/Display
- MDBT50Q-DB-40
- MDBT50Q-RX Dongle
- MEOWBIT
- MORPHEANS MorphESP-240
- MakerDiary nRF52840 MDK
- MakerDiary nRF52840 MDK USB Dongle
- Makerdiary M60 Keyboard
- Makerdiary Pitaya Go
- Makerdiary nRF52840 M.2 Developer Kit
- Melopero Shake RP2040
- Metro MIMXRT1011
- MicroDev microC3
- MicroDev microS2
- Mini SAM M4
- NUCLEO STM32F746
- NUCLEO STM32F767
- NUCLEO STM32H743
- OPENMV-H7 R1
- Oak Dev Tech BREAD2040
- Oak Dev Tech PixelWing ESP32S2
- Open Hardware Summit 2020 Badge
- PCA10056 nRF52840-DK
- PCA10059 nRF52840 Dongle
- PYB LR Nano V2
- Particle Argon
- Particle Boron
- Particle Xenon
- Pimoroni Interstate 75
- Pimoroni Keybow 2040
- Pimoroni PGA2040
- Pimoroni Pico LiPo (16MB)
- Pimoroni Pico LiPo (4MB)
- Pimoroni PicoSystem
- Pimoroni Plasma 2040
- Pimoroni Tiny 2040
- PyCubedv04
- PyCubedv04-MRAM
- PyCubedv05
- PyCubedv05-MRAM
- PyKey60
- PyboardV1_1
- RP2040 Stamp
- Raspberry Pi 4B
- Raspberry Pi Compute Module 4 IO Board
- Raspberry Pi Pico
- Raspberry Pi Zero 2W
- Robo HAT MM1 M4
- S2Mini
- S2Pico
- SAM E54 Xplained Pro
- SAM32v26
- SPRESENSE
- ST STM32F746G Discovery
- STM32F411E_DISCO
- STM32F412G_DISCO
- STM32F4_DISCO
- Saola 1 w/Wroom
- Saola 1 w/Wrover
- Seeeduino Wio Terminal
- Silicognition LLC M4-Shim
- Simmel
- SparkFun MicroMod RP2040 Processor
- SparkFun MicroMod SAMD51 Processor
- SparkFun MicroMod nRF52840 Processor
- SparkFun Pro Micro RP2040
- SparkFun Pro nRF52840 Mini
- SparkFun STM32 MicroMod Processor
- SparkFun Thing Plus - RP2040
- SparkFun Thing Plus - SAMD51
- Sprite_v2b
- Swan R5
- TG-Boards' Datalore IP M4
- TG-Watch
- THUNDERPACK_v11
- THUNDERPACK_v12
- Targett Module Clip w/Wroom
- Targett Module Clip w/Wrover
- Teensy 4.0
- Teensy 4.1
- Teknikio Bluebird
- The Open Book Feather
- Thingz - Galaxia
- TinkeringTech ScoutMakes Azul
- TinyS2
- UARTLogger II
- WarmBit BluePixel nRF52840
- Winterbloom Sol
- iMX RT 1020 EVK
- iMX RT 1060 EVK
- nanoESP32-S2 w/Wrover
- nanoESP32-S2 w/Wroom
- nice!nano
- stm32f411ce-blackpill
- stm32f411ce-blackpill-with-flash
.. py:class:: I2C(scl: microcontroller.Pin, sda: microcontroller.Pin, *, frequency: int = 400000, timeout: int = 255)
Two wire serial protocol
I2C is a two-wire protocol for communicating between devices. At the
physical level it consists of 2 wires: SCL and SDA, the clock and data
lines respectively.
.. seealso:: Using this class directly requires careful lock management.
Instead, use :class:`~adafruit_bus_device.i2c_device.I2CDevice` to
manage locks.
.. seealso:: Using this class to directly read registers requires manual
bit unpacking. Instead, use an existing driver or make one with
:ref:`Register ` data descriptors.
:param ~microcontroller.Pin scl: The clock pin
:param ~microcontroller.Pin sda: The data pin
:param int frequency: The clock frequency of the bus
:param int timeout: The maximum clock stretching timeout in microseconds
.. py:method:: deinit() -> None
Releases control of the underlying hardware so other classes can use it.
.. py:method:: __enter__() -> I2C
No-op used in Context Managers.
.. py:method:: __exit__() -> None
Automatically deinitializes the hardware on context exit. See
:ref:`lifetime-and-contextmanagers` for more info.
.. py:method:: scan() -> List[int]
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of
those that respond. A device responds if it pulls the SDA line low after
its address (including a read bit) is sent on the bus.
.. py:method:: try_lock() -> bool
Attempts to grab the I2C lock. Returns True on success.
.. py:method:: unlock() -> None
Releases the I2C lock.
.. py:method:: readfrom_into(address: int, buffer: _typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None
Read into ``buffer`` from the device selected by ``address``.
The number of bytes read will be the length of ``buffer``.
At least one byte must be read.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]``. This will not cause an allocation like
``buf[start:end]`` will so it saves memory.
:param int address: 7-bit device address
:param WriteableBuffer buffer: buffer to write into
:param int start: Index to start writing at
:param int end: Index to write up to but not include
.. py:method:: writeto(address: int, buffer: _typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None
Write the bytes from ``buffer`` to the device selected by ``address`` and then transmits a
stop bit. Use `writeto_then_readfrom` when needing a write, no stop and repeated start
before a read.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``buffer[start:end]``.
Writing a buffer or slice of length zero is permitted, as it can be used
to poll for the existence of a device.
:param int address: 7-bit device address
:param ReadableBuffer buffer: buffer containing the bytes to write
:param int start: beginning of buffer slice
:param int end: end of buffer slice; if not specified, use ``len(buffer)``
.. py:method:: writeto_then_readfrom(address: int, out_buffer: _typing.ReadableBuffer, in_buffer: _typing.ReadableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize) -> None
Write the bytes from ``out_buffer`` to the device selected by ``address``, generate no stop
bit, generate a repeated start and read into ``in_buffer``. ``out_buffer`` and
``in_buffer`` can be the same buffer because they are used sequentially.
If ``out_start`` or ``out_end`` is provided, then the buffer will be sliced
as if ``out_buffer[out_start:out_end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``out_buffer[start:end]``.
If ``in_start`` or ``in_end`` is provided, then the input buffer will be sliced
as if ``in_buffer[in_start:in_end]`` were passed,
The number of bytes read will be the length of ``out_buffer[in_start:in_end]``.
:param int address: 7-bit device address
:param ~_typing.ReadableBuffer out_buffer: buffer containing the bytes to write
:param ~_typing.WriteableBuffer in_buffer: buffer to write into
:param int out_start: beginning of ``out_buffer`` slice
:param int out_end: end of ``out_buffer`` slice; if not specified, use ``len(out_buffer)``
:param int in_start: beginning of ``in_buffer`` slice
:param int in_end: end of ``in_buffer slice``; if not specified, use ``len(in_buffer)``
.. py:class:: SPI(clock: microcontroller.Pin, MOSI: Optional[microcontroller.Pin] = None, MISO: Optional[microcontroller.Pin] = None)
A 3-4 wire serial protocol
SPI is a serial protocol that has exclusive pins for data in and out of the
main device. It is typically faster than :py:class:`~bitbangio.I2C` because a
separate pin is used to select a device rather than a transmitted
address. This class only manages three of the four SPI lines: `!clock`,
`!MOSI`, `!MISO`. Its up to the client to manage the appropriate
select line, often abbreviated `!CS` or `!SS`. (This is common because
multiple secondaries can share the `!clock`, `!MOSI` and `!MISO` lines
and therefore the hardware.)
Construct an SPI object on the given pins.
.. seealso:: Using this class directly requires careful lock management.
Instead, use :class:`~adafruit_bus_device.spi_device.SPIDevice` to
manage locks.
.. seealso:: Using this class to directly read registers requires manual
bit unpacking. Instead, use an existing driver or make one with
:ref:`Register ` data descriptors.
:param ~microcontroller.Pin clock: the pin to use for the clock.
:param ~microcontroller.Pin MOSI: the Main Out Selected In pin.
:param ~microcontroller.Pin MISO: the Main In Selected Out pin.
.. py:method:: deinit() -> None
Turn off the SPI bus.
.. py:method:: __enter__() -> SPI
No-op used by Context Managers.
.. py:method:: __exit__() -> None
Automatically deinitializes the hardware when exiting a context. See
:ref:`lifetime-and-contextmanagers` for more info.
.. py:method:: configure(*, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8) -> None
Configures the SPI bus. Only valid when locked.
:param int baudrate: the clock rate in Hertz
:param int polarity: the base state of the clock line (0 or 1)
:param int phase: the edge of the clock that data is captured. First (0)
or second (1). Rising or falling depends on clock polarity.
:param int bits: the number of bits per word
.. py:method:: try_lock() -> bool
Attempts to grab the SPI lock. Returns True on success.
:return: True when lock has been grabbed
:rtype: bool
.. py:method:: unlock() -> None
Releases the SPI lock.
.. py:method:: write(buf: _typing.ReadableBuffer) -> None
Write the data contained in ``buf``. Requires the SPI being locked.
If the buffer is empty, nothing happens.
.. py:method:: readinto(buffer: _typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize, write_value: int = 0) -> None
Read into ``buffer`` while writing ``write_value`` for each byte read.
The SPI object must be locked.
If the number of bytes to read is 0, nothing happens.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]`` were passed.
The number of bytes read will be the length of ``buffer[start:end]``.
:param WriteableBuffer buffer: read bytes into this buffer
:param int start: beginning of buffer slice
:param int end: end of buffer slice; if not specified, use ``len(buffer)``
:param int write_value: value to write while reading
.. py:method:: write_readinto(out_buffer: _typing.ReadableBuffer, in_buffer: _typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize) -> None
Write out the data in ``out_buffer`` while simultaneously reading data into ``in_buffer``.
The SPI object must be locked.
If ``out_start`` or ``out_end`` is provided, then the buffer will be sliced
as if ``out_buffer[out_start:out_end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``out_buffer[out_start:out_end]``.
If ``in_start`` or ``in_end`` is provided, then the input buffer will be sliced
as if ``in_buffer[in_start:in_end]`` were passed,
The number of bytes read will be the length of ``out_buffer[in_start:in_end]``.
The lengths of the slices defined by ``out_buffer[out_start:out_end]``
and ``in_buffer[in_start:in_end]`` must be equal.
If buffer slice lengths are both 0, nothing happens.
:param ReadableBuffer out_buffer: write out bytes from this buffer
:param WriteableBuffer in_buffer: read bytes into this buffer
:param int out_start: beginning of ``out_buffer`` slice
:param int out_end: end of ``out_buffer`` slice; if not specified, use ``len(out_buffer)``
:param int in_start: beginning of ``in_buffer`` slice
:param int in_end: end of ``in_buffer slice``; if not specified, use ``len(in_buffer)``