:mod:`busio`
============
.. py:module:: busio
.. autoapi-nested-parse::
Hardware accelerated external bus access
The `busio` module contains classes to support a variety of serial
protocols.
When the microcontroller does not support the behavior in a hardware
accelerated fashion it may internally use a bitbang routine. However, if
hardware support is available on a subset of pins but not those provided,
then a RuntimeError will be raised. Use the `bitbangio` module to explicitly
bitbang a serial protocol on any general purpose pins.
All classes change hardware state and should be deinitialized when they
are no longer needed if the program continues after use. To do so, either
call :py:meth:`!deinit` or use a context manager. See
:ref:`lifetime-and-contextmanagers` for more info.
For example::
import busio
from board import *
i2c = busio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()
This example will initialize the the device, run
:py:meth:`~busio.I2C.scan` and then :py:meth:`~busio.I2C.deinit` the
hardware. The last step is optional because CircuitPython automatically
resets hardware after a program finishes.
.. raw:: html
Available on these boards
- 8086 Commander
- @sarfata shIRtty
- AITHinker ESP32-C3S_Kit
- ARAMCON Badge 2019
- ARAMCON2 Badge
- ATMegaZero ESP32-S2
- Adafruit BLM Badge
- Adafruit CLUE nRF52840 Express
- Adafruit Circuit Playground Bluefruit
- Adafruit Circuit Playground Express 4-H
- Adafruit CircuitPlayground Express
- Adafruit CircuitPlayground Express with Crickit libraries
- Adafruit CircuitPlayground Express with displayio
- Adafruit EdgeBadge
- Adafruit Feather Bluefruit Sense
- Adafruit Feather ESP32-S2 TFT
- Adafruit Feather ESP32S2
- Adafruit Feather M0 Adalogger
- Adafruit Feather M0 Basic
- Adafruit Feather M0 Express
- Adafruit Feather M0 Express with Crickit libraries
- Adafruit Feather M0 RFM69
- Adafruit Feather M0 RFM9x
- Adafruit Feather M4 CAN
- Adafruit Feather M4 Express
- Adafruit Feather MIMXRT1011
- Adafruit Feather RP2040
- Adafruit Feather STM32F405 Express
- Adafruit Feather nRF52840 Express
- Adafruit FunHouse
- Adafruit Gemma M0
- Adafruit Gemma M0 PyCon 2018
- Adafruit Grand Central M4 Express
- Adafruit Hallowing M4 Express
- Adafruit ItsyBitsy M0 Express
- Adafruit ItsyBitsy M4 Express
- Adafruit ItsyBitsy RP2040
- Adafruit ItsyBitsy nRF52840 Express
- Adafruit KB2040
- Adafruit LED Glasses Driver nRF52840
- Adafruit Macropad RP2040
- Adafruit MagTag
- Adafruit Matrix Portal M4
- Adafruit Metro ESP32S2
- Adafruit Metro M0 Express
- Adafruit Metro M4 Airlift Lite
- Adafruit Metro M4 Express
- Adafruit Metro nRF52840 Express
- Adafruit Monster M4SK
- Adafruit ProxLight Trinkey M0
- Adafruit PyGamer
- Adafruit PyPortal
- Adafruit PyPortal Pynt
- Adafruit PyPortal Titano
- Adafruit PyRuler
- Adafruit Pybadge
- Adafruit QT Py ESP32S2
- Adafruit QT Py M0
- Adafruit QT Py M0 Haxpress
- Adafruit QT Py RP2040
- Adafruit QT2040 Trinkey
- Adafruit Trellis M4 Express
- Adafruit Trinket M0
- AloriumTech Evo M51
- Arduino MKR Zero
- Arduino MKR1300
- Arduino Nano 33 BLE
- Arduino Nano 33 IoT
- Arduino Nano RP2040 Connect
- Arduino Zero
- Artisense Reference Design RD00
- AtelierDuMaker nRF52840 Breakout
- BDMICRO VINA-D21
- BDMICRO VINA-D51
- BLE-SS dev board Multi Sensor
- BastBLE
- BastWiFi
- BlueMicro840
- CP Sapling M0
- CP Sapling M0 w/ SPI Flash
- CP32-M4
- Capable Robot Programmable USB Hub
- Cedar Grove StringCar M0 Express
- Challenger NB RP2040 WiFi
- Challenger RP2040 LTE
- Challenger RP2040 WiFi
- Circuit Playground Express Digi-Key PyCon 2019
- CircuitBrains Basic
- CircuitBrains Deluxe
- CrumpS2
- Cytron Maker Nano RP2040
- Cytron Maker Pi RP2040
- DynOSSAT-EDU-EPS
- DynOSSAT-EDU-OBC
- DynaLoRa_USB
- ESP 12k NodeMCU
- Electronic Cats Bast Pro Mini M0
- Electronic Cats CatWAN USBStick
- Electronic Cats Hunter Cat NFC
- Electronic Cats NFC Copy Cat
- Electronut Labs Blip
- Electronut Labs Papyr
- EncoderPad RP2040
- Escornabot Makech
- Espruino Pico
- Espruino Wifi
- Feather ESP32S2 without PSRAM
- Feather MIMXRT1011
- Feather MIMXRT1062
- FeatherS2
- FeatherS2 Neo
- FeatherS2 PreRelease
- Fluff M0
- Franzininho WIFI w/Wroom
- Franzininho WIFI w/Wrover
- Gravitech Cucumber M
- Gravitech Cucumber MS
- Gravitech Cucumber R
- Gravitech Cucumber RS
- HMI-DevKit-1.1
- Hacked Feather M0 Express with 8Mbyte SPI flash
- HalloWing M0 Express
- HiiBot BlueFi
- IMXRT1010-EVK
- IkigaiSense Vita nRF52840
- J&J Studios datum-Distance
- J&J Studios datum-IMU
- J&J Studios datum-Light
- J&J Studios datum-Weather
- Kaluga 1
- LILYGO TTGO T8 ESP32-S2 w/Display
- LoC BeR M4 base board
- MDBT50Q-DB-40
- MDBT50Q-RX Dongle
- MEOWBIT
- MORPHEANS MorphESP-240
- MakerDiary nRF52840 MDK
- MakerDiary nRF52840 MDK USB Dongle
- Makerdiary M60 Keyboard
- Makerdiary Pitaya Go
- Makerdiary nRF52840 M.2 Developer Kit
- Melopero Shake RP2040
- Meow Meow
- Metro MIMXRT1011
- MicroDev microC3
- MicroDev microS2
- Mini SAM M4
- NUCLEO STM32F746
- NUCLEO STM32F767
- NUCLEO STM32H743
- OPENMV-H7 R1
- Oak Dev Tech BREAD2040
- Oak Dev Tech PixelWing ESP32S2
- Open Hardware Summit 2020 Badge
- PCA10056 nRF52840-DK
- PCA10059 nRF52840 Dongle
- PCA10100 nRF52833 DK
- PYB LR Nano V2
- Particle Argon
- Particle Boron
- Particle Xenon
- PewPew 10.2
- PewPew 13
- PewPew M4
- PicoPlanet
- Pimoroni Interstate 75
- Pimoroni Keybow 2040
- Pimoroni PGA2040
- Pimoroni Pico LiPo (16MB)
- Pimoroni Pico LiPo (4MB)
- Pimoroni PicoSystem
- Pimoroni Plasma 2040
- Pimoroni Tiny 2040
- PyCubedv04
- PyCubedv04-MRAM
- PyCubedv05
- PyCubedv05-MRAM
- PyKey60
- PyboardV1_1
- RP2040 Stamp
- Raspberry Pi 4B
- Raspberry Pi Compute Module 4 IO Board
- Raspberry Pi Pico
- Raspberry Pi Zero 2W
- Robo HAT MM1 M4
- S2Mini
- S2Pico
- SAM E54 Xplained Pro
- SAM32v26
- SPRESENSE
- ST STM32F746G Discovery
- STM32F411E_DISCO
- STM32F412G_DISCO
- STM32F4_DISCO
- Saola 1 w/Wroom
- Saola 1 w/Wrover
- Seeeduino Wio Terminal
- Seeeduino XIAO
- Serpente
- Silicognition LLC M4-Shim
- Simmel
- SparkFun LUMIDrive
- SparkFun MicroMod RP2040 Processor
- SparkFun MicroMod SAMD51 Processor
- SparkFun MicroMod nRF52840 Processor
- SparkFun Pro Micro RP2040
- SparkFun Pro nRF52840 Mini
- SparkFun Qwiic Micro
- SparkFun RedBoard Turbo
- SparkFun SAMD21 Dev Breakout
- SparkFun SAMD21 Mini Breakout
- SparkFun STM32 MicroMod Processor
- SparkFun Thing Plus - RP2040
- SparkFun Thing Plus - SAMD51
- Sprite_v2b
- StackRduino M0 PRO
- Swan R5
- TG-Boards' Datalore IP M4
- TG-Watch
- THUNDERPACK_v11
- THUNDERPACK_v12
- Targett Module Clip w/Wroom
- Targett Module Clip w/Wrover
- Teensy 4.0
- Teensy 4.1
- Teknikio Bluebird
- The Open Book Feather
- Thingz - Galaxia
- TinkeringTech ScoutMakes Azul
- TinyS2
- Trinket M0 Haxpress
- UARTLogger II
- WarmBit BluePixel nRF52840
- Winterbloom Big Honking Button
- Winterbloom Sol
- XinaBox CC03
- XinaBox CS11
- iMX RT 1020 EVK
- iMX RT 1060 EVK
- keithp.com snekboard
- micro:bit v2
- nanoESP32-S2 w/Wrover
- nanoESP32-S2 w/Wroom
- ndGarage[n°] Bit6: FeatherSnow-v2
- ndGarage[n°]Bit6:FeatherSnow
- nice!nano
- senseBox MCU
- stm32f411ce-blackpill
- stm32f411ce-blackpill-with-flash
- uChip
- uGame10
.. py:class:: I2C(scl: microcontroller.Pin, sda: microcontroller.Pin, *, frequency: int = 100000, timeout: int = 255)
Two wire serial protocol
I2C is a two-wire protocol for communicating between devices. At the
physical level it consists of 2 wires: SCL and SDA, the clock and data
lines respectively.
.. seealso:: Using this class directly requires careful lock management.
Instead, use :class:`~adafruit_bus_device.I2CDevice` to
manage locks.
.. seealso:: Using this class to directly read registers requires manual
bit unpacking. Instead, use an existing driver or make one with
:ref:`Register ` data descriptors.
:param ~microcontroller.Pin scl: The clock pin
:param ~microcontroller.Pin sda: The data pin
:param int frequency: The clock frequency in Hertz
:param int timeout: The maximum clock stretching timeut - (used only for
:class:`bitbangio.I2C`; ignored for :class:`busio.I2C`)
.. note:: On the nRF52840, only one I2C object may be created,
except on the Circuit Playground Bluefruit, which allows two,
one for the onboard accelerometer, and one for offboard use.
.. py:method:: deinit() -> None
Releases control of the underlying hardware so other classes can use it.
.. py:method:: __enter__() -> I2C
No-op used in Context Managers.
.. py:method:: __exit__() -> None
Automatically deinitializes the hardware on context exit. See
:ref:`lifetime-and-contextmanagers` for more info.
.. py:method:: scan() -> List[int]
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a
list of those that respond.
:return: List of device ids on the I2C bus
:rtype: list
.. py:method:: try_lock() -> bool
Attempts to grab the I2C lock. Returns True on success.
:return: True when lock has been grabbed
:rtype: bool
.. py:method:: unlock() -> None
Releases the I2C lock.
.. py:method:: readfrom_into(address: int, buffer: _typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None
Read into ``buffer`` from the device selected by ``address``.
At least one byte must be read.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]`` were passed, but without copying the data.
The number of bytes read will be the length of ``buffer[start:end]``.
:param int address: 7-bit device address
:param WriteableBuffer buffer: buffer to write into
:param int start: beginning of buffer slice
:param int end: end of buffer slice; if not specified, use ``len(buffer)``
.. py:method:: writeto(address: int, buffer: _typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None
Write the bytes from ``buffer`` to the device selected by ``address`` and
then transmit a stop bit.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``buffer[start:end]``.
Writing a buffer or slice of length zero is permitted, as it can be used
to poll for the existence of a device.
:param int address: 7-bit device address
:param ReadableBuffer buffer: buffer containing the bytes to write
:param int start: beginning of buffer slice
:param int end: end of buffer slice; if not specified, use ``len(buffer)``
.. py:method:: writeto_then_readfrom(address: int, out_buffer: _typing.ReadableBuffer, in_buffer: _typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize) -> None
Write the bytes from ``out_buffer`` to the device selected by ``address``, generate no stop
bit, generate a repeated start and read into ``in_buffer``. ``out_buffer`` and
``in_buffer`` can be the same buffer because they are used sequentially.
If ``out_start`` or ``out_end`` is provided, then the buffer will be sliced
as if ``out_buffer[out_start:out_end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``out_buffer[start:end]``.
If ``in_start`` or ``in_end`` is provided, then the input buffer will be sliced
as if ``in_buffer[in_start:in_end]`` were passed,
The number of bytes read will be the length of ``out_buffer[in_start:in_end]``.
:param int address: 7-bit device address
:param ~_typing.ReadableBuffer out_buffer: buffer containing the bytes to write
:param ~_typing.WriteableBuffer in_buffer: buffer to write into
:param int out_start: beginning of ``out_buffer`` slice
:param int out_end: end of ``out_buffer`` slice; if not specified, use ``len(out_buffer)``
:param int in_start: beginning of ``in_buffer`` slice
:param int in_end: end of ``in_buffer slice``; if not specified, use ``len(in_buffer)``
.. py:class:: SPI(clock: microcontroller.Pin, MOSI: Optional[microcontroller.Pin] = None, MISO: Optional[microcontroller.Pin] = None)
A 3-4 wire serial protocol
SPI is a serial protocol that has exclusive pins for data in and out of the
main device. It is typically faster than :py:class:`~bitbangio.I2C` because a
separate pin is used to select a device rather than a transmitted
address. This class only manages three of the four SPI lines: `!clock`,
`!MOSI`, `!MISO`. Its up to the client to manage the appropriate
select line, often abbreviated `!CS` or `!SS`. (This is common because
multiple secondaries can share the `!clock`, `!MOSI` and `!MISO` lines
and therefore the hardware.)
Construct an SPI object on the given pins.
.. note:: The SPI peripherals allocated in order of desirability, if possible,
such as highest speed and not shared use first. For instance, on the nRF52840,
there is a single 32MHz SPI peripheral, and multiple 8MHz peripherals,
some of which may also be used for I2C. The 32MHz SPI peripheral is returned
first, then the exclusive 8MHz SPI peripheral, and finally the shared 8MHz
peripherals.
.. seealso:: Using this class directly requires careful lock management.
Instead, use :class:`~adafruit_bus_device.SPIDevice` to
manage locks.
.. seealso:: Using this class to directly read registers requires manual
bit unpacking. Instead, use an existing driver or make one with
:ref:`Register ` data descriptors.
:param ~microcontroller.Pin clock: the pin to use for the clock.
:param ~microcontroller.Pin MOSI: the Main Out Selected In pin.
:param ~microcontroller.Pin MISO: the Main In Selected Out pin.
.. py:attribute:: frequency
:annotation: :int
The actual SPI bus frequency. This may not match the frequency requested
due to internal limitations.
.. py:method:: deinit() -> None
Turn off the SPI bus.
.. py:method:: __enter__() -> SPI
No-op used by Context Managers.
Provided by context manager helper.
.. py:method:: __exit__() -> None
Automatically deinitializes the hardware when exiting a context. See
:ref:`lifetime-and-contextmanagers` for more info.
.. py:method:: configure(*, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8) -> None
Configures the SPI bus. The SPI object must be locked.
:param int baudrate: the desired clock rate in Hertz. The actual clock rate may be higher or lower
due to the granularity of available clock settings.
Check the `frequency` attribute for the actual clock rate.
:param int polarity: the base state of the clock line (0 or 1)
:param int phase: the edge of the clock that data is captured. First (0)
or second (1). Rising or falling depends on clock polarity.
:param int bits: the number of bits per word
.. note:: On the SAMD21, it is possible to set the baudrate to 24 MHz, but that
speed is not guaranteed to work. 12 MHz is the next available lower speed, and is
within spec for the SAMD21.
.. note:: On the nRF52840, these baudrates are available: 125kHz, 250kHz, 1MHz, 2MHz, 4MHz,
and 8MHz.
If you pick a a baudrate other than one of these, the nearest lower
baudrate will be chosen, with a minimum of 125kHz.
Two SPI objects may be created, except on the Circuit Playground Bluefruit,
which allows only one (to allow for an additional I2C object).
.. py:method:: try_lock() -> bool
Attempts to grab the SPI lock. Returns True on success.
:return: True when lock has been grabbed
:rtype: bool
.. py:method:: unlock() -> None
Releases the SPI lock.
.. py:method:: write(buffer: _typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize) -> None
Write the data contained in ``buffer``. The SPI object must be locked.
If the buffer is empty, nothing happens.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``buffer[start:end]``.
:param ReadableBuffer buffer: write out bytes from this buffer
:param int start: beginning of buffer slice
:param int end: end of buffer slice; if not specified, use ``len(buffer)``
.. py:method:: readinto(buffer: _typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize, write_value: int = 0) -> None
Read into ``buffer`` while writing ``write_value`` for each byte read.
The SPI object must be locked.
If the number of bytes to read is 0, nothing happens.
If ``start`` or ``end`` is provided, then the buffer will be sliced
as if ``buffer[start:end]`` were passed.
The number of bytes read will be the length of ``buffer[start:end]``.
:param WriteableBuffer buffer: read bytes into this buffer
:param int start: beginning of buffer slice
:param int end: end of buffer slice; if not specified, use ``len(buffer)``
:param int write_value: value to write while reading
.. py:method:: write_readinto(out_buffer: _typing.ReadableBuffer, in_buffer: _typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize) -> None
Write out the data in ``out_buffer`` while simultaneously reading data into ``in_buffer``.
The SPI object must be locked.
If ``out_start`` or ``out_end`` is provided, then the buffer will be sliced
as if ``out_buffer[out_start:out_end]`` were passed, but without copying the data.
The number of bytes written will be the length of ``out_buffer[out_start:out_end]``.
If ``in_start`` or ``in_end`` is provided, then the input buffer will be sliced
as if ``in_buffer[in_start:in_end]`` were passed,
The number of bytes read will be the length of ``out_buffer[in_start:in_end]``.
The lengths of the slices defined by ``out_buffer[out_start:out_end]``
and ``in_buffer[in_start:in_end]`` must be equal.
If buffer slice lengths are both 0, nothing happens.
:param ReadableBuffer out_buffer: write out bytes from this buffer
:param WriteableBuffer in_buffer: read bytes into this buffer
:param int out_start: beginning of ``out_buffer`` slice
:param int out_end: end of ``out_buffer`` slice; if not specified, use ``len(out_buffer)``
:param int in_start: beginning of ``in_buffer`` slice
:param int in_end: end of ``in_buffer slice``; if not specified, use ``len(in_buffer)``
.. py:class:: UART(tx: microcontroller.Pin, rx: microcontroller.Pin, *, baudrate: int = 9600, bits: int = 8, parity: Optional[Parity] = None, stop: int = 1, timeout: float = 1, receiver_buffer_size: int = 64)
A bidirectional serial protocol
A common bidirectional serial protocol that uses an an agreed upon speed
rather than a shared clock line.
:param ~microcontroller.Pin tx: the pin to transmit with, or ``None`` if this ``UART`` is receive-only.
:param ~microcontroller.Pin rx: the pin to receive on, or ``None`` if this ``UART`` is transmit-only.
:param ~microcontroller.Pin rts: the pin for rts, or ``None`` if rts not in use.
:param ~microcontroller.Pin cts: the pin for cts, or ``None`` if cts not in use.
:param ~microcontroller.Pin rs485_dir: the output pin for rs485 direction setting, or ``None`` if rs485 not in use.
:param bool rs485_invert: rs485_dir pin active high when set. Active low otherwise.
:param int baudrate: the transmit and receive speed.
:param int bits: the number of bits per byte, 5 to 9.
:param Parity parity: the parity used for error checking.
:param int stop: the number of stop bits, 1 or 2.
:param float timeout: the timeout in seconds to wait for the first character and between subsequent characters when reading. Raises ``ValueError`` if timeout >100 seconds.
:param int receiver_buffer_size: the character length of the read buffer (0 to disable). (When a character is 9 bits the buffer will be 2 * receiver_buffer_size bytes.)
*New in CircuitPython 4.0:* ``timeout`` has incompatibly changed units from milliseconds to seconds.
The new upper limit on ``timeout`` is meant to catch mistaken use of milliseconds.
.. py:attribute:: baudrate
:annotation: :int
The current baudrate.
.. py:attribute:: in_waiting
:annotation: :int
The number of bytes in the input buffer, available to be read
.. py:attribute:: timeout
:annotation: :float
The current timeout, in seconds (float).
.. py:method:: deinit() -> None
Deinitialises the UART and releases any hardware resources for reuse.
.. py:method:: __enter__() -> UART
No-op used by Context Managers.
.. py:method:: __exit__() -> None
Automatically deinitializes the hardware when exiting a context. See
:ref:`lifetime-and-contextmanagers` for more info.
.. py:method:: read(nbytes: Optional[int] = None) -> Optional[bytes]
Read characters. If ``nbytes`` is specified then read at most that many
bytes. Otherwise, read everything that arrives until the connection
times out. Providing the number of bytes expected is highly recommended
because it will be faster.
:return: Data read
:rtype: bytes or None
.. py:method:: readinto(buf: _typing.WriteableBuffer) -> Optional[int]
Read bytes into the ``buf``. Read at most ``len(buf)`` bytes.
:return: number of bytes read and stored into ``buf``
:rtype: int or None (on a non-blocking error)
*New in CircuitPython 4.0:* No length parameter is permitted.
.. py:method:: readline() -> bytes
Read a line, ending in a newline character, or
return None if a timeout occurs sooner, or
return everything readable if no newline is found and timeout=0
:return: the line read
:rtype: bytes or None
.. py:method:: write(buf: _typing.WriteableBuffer) -> Optional[int]
Write the buffer of bytes to the bus.
*New in CircuitPython 4.0:* ``buf`` must be bytes, not a string.
:return: the number of bytes written
:rtype: int or None
.. py:method:: reset_input_buffer() -> None
Discard any unread characters in the input buffer.
.. py:class:: Parity
Enum-like class to define the parity used to verify correct data transfer.
.. py:attribute:: ODD
:annotation: :int
Total number of ones should be odd.
.. py:attribute:: EVEN
:annotation: :int
Total number of ones should be even.