:mod:`ulab.numpy.linalg` ======================== .. py:module:: ulab.numpy.linalg .. py:function:: cholesky(A: ulab.numpy.ndarray) -> ulab.numpy.ndarray :param ~ulab.numpy.ndarray A: a positive definite, symmetric square matrix :return ~ulab.numpy.ndarray L: a square root matrix in the lower triangular form :raises ValueError: If the input does not fulfill the necessary conditions The returned matrix satisfies the equation m=LL* .. py:function:: det(m: ulab.numpy.ndarray) -> float :param: m, a square matrix :return float: The determinant of the matrix Computes the eigenvalues and eigenvectors of a square matrix .. py:function:: eig(m: ulab.numpy.ndarray) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray] :param m: a square matrix :return tuple (eigenvectors, eigenvalues): Computes the eigenvalues and eigenvectors of a square matrix .. py:function:: inv(m: ulab.numpy.ndarray) -> ulab.numpy.ndarray :param ~ulab.numpy.ndarray m: a square matrix :return: The inverse of the matrix, if it exists :raises ValueError: if the matrix is not invertible Computes the inverse of a square matrix .. py:function:: norm(x: ulab.numpy.ndarray) -> float :param ~ulab.numpy.ndarray x: a vector or a matrix Computes the 2-norm of a vector or a matrix, i.e., ``sqrt(sum(x*x))``, however, without the RAM overhead. .. py:function:: qr(m: ulab.numpy.ndarray) -> Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray] :param m: a matrix :return tuple (Q, R): Factor the matrix a as QR, where Q is orthonormal and R is upper-triangular.