:mod:`ulab.scipy.optimize` ========================== .. py:module:: ulab.scipy.optimize .. py:function:: bisect(fun: Callable[[float], float], a: float, b: float, *, xtol: float = 2.4e-07, maxiter: int = 100) -> float :param callable f: The function to bisect :param float a: The left side of the interval :param float b: The right side of the interval :param float xtol: The tolerance value :param float maxiter: The maximum number of iterations to perform Find a solution (zero) of the function ``f(x)`` on the interval (``a``..``b``) using the bisection method. The result is accurate to within ``xtol`` unless more than ``maxiter`` steps are required. .. py:function:: fmin(fun: Callable[[float], float], x0: float, *, xatol: float = 2.4e-07, fatol: float = 2.4e-07, maxiter: int = 200) -> float :param callable f: The function to bisect :param float x0: The initial x value :param float xatol: The absolute tolerance value :param float fatol: The relative tolerance value Find a minimum of the function ``f(x)`` using the downhill simplex method. The located ``x`` is within ``fxtol`` of the actual minimum, and ``f(x)`` is within ``fatol`` of the actual minimum unless more than ``maxiter`` steps are requried. .. py:function:: newton(fun: Callable[[float], float], x0: float, *, xtol: float = 2.4e-07, rtol: float = 0.0, maxiter: int = 50) -> float :param callable f: The function to bisect :param float x0: The initial x value :param float xtol: The absolute tolerance value :param float rtol: The relative tolerance value :param float maxiter: The maximum number of iterations to perform Find a solution (zero) of the function ``f(x)`` using Newton's Method. The result is accurate to within ``xtol * rtol * |f(x)|`` unless more than ``maxiter`` steps are requried.