Adafruit CircuitPython API Reference¶
Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level API reference docs which may link out to separate « getting started » guides. Adafruit has many excellent tutorials available through the Adafruit Learning System.
CircuitPython¶
circuitpython.org | Get CircuitPython | Documentation | Contributing | Branding | Differences from Micropython | Project Structure
CircuitPython is a beginner friendly, open source version of Python for tiny, inexpensive
computers called microcontrollers. Microcontrollers are the brains of many electronics including a
wide variety of development boards used to build hobby projects and prototypes. CircuitPython in
electronics is one of the best ways to learn to code because it connects code to reality. Simply
install CircuitPython on a supported USB board usually via drag and drop and then edit a code.py
file on the CIRCUITPY drive. The code will automatically reload. No software installs are needed
besides a text editor (we recommend Mu for beginners.)
Starting with CircuitPython 7.0.0, some boards may only be connectable over Bluetooth Low Energy (BLE). Those boards provide serial and file access over BLE instead of USB using open protocols. (Some boards may use both USB and BLE.) BLE access can be done from a variety of apps including code.circuitpython.org.
CircuitPython features unified Python core APIs and a growing list of 300+ device libraries and drivers that work with it. These libraries also work on single board computers with regular Python via the Adafruit Blinka Library.
CircuitPython is based on MicroPython. See below for differences. Most, but not all, CircuitPython development is sponsored by Adafruit and is available on their educational development boards. Please support both MicroPython and Adafruit.
Get CircuitPython¶
Official binaries for all supported boards are available through circuitpython.org/downloads. The site includes stable, unstable and continuous builds. Full release notes are available through GitHub releases as well.
Documentation¶
Guides and videos are available through the Adafruit Learning System under the CircuitPython category. An API reference is also available on Read the Docs. A collection of awesome resources can be found at Awesome CircuitPython.
Specifically useful documentation when starting out:
Code Search¶
GitHub doesn’t currently support code search on forks. Therefore, CircuitPython doesn’t have code search through GitHub because it is a fork of MicroPython. Luckily, SourceGraph has free code search for public repos like CircuitPython. So, visit sourcegraph.com/github.com/adafruit/circuitpython to search the CircuitPython codebase online.
Contributing¶
See CONTRIBUTING.md for full guidelines but please be aware that by contributing to this project you are agreeing to the Code of Conduct. Contributors who follow the Code of Conduct are welcome to submit pull requests and they will be promptly reviewed by project admins. Please join the Discord too.
Branding¶
While we are happy to see CircuitPython forked and modified, we’d appreciate it if forked releases not use the name « CircuitPython » or the Blinka logo. « CircuitPython » means something special to us and those who learn about it. As a result, we’d like to make sure products referring to it meet a common set of requirements.
If you’d like to use the term « CircuitPython » and Blinka for your product here is what we ask:
Your product is supported by the primary « adafruit/circuitpython » repo. This way we can update any custom code as we update the CircuitPython internals.
Your product is listed on circuitpython.org (source here). This is to ensure that a user of your product can always download the latest version of CircuitPython from the standard place.
Your product has a user accessible USB plug which appears as a CIRCUITPY drive when plugged in AND/OR provides file and serial access over Bluetooth Low Energy. Boards that do not support USB should be clearly marked as BLE-only CircuitPython.
If you choose not to meet these requirements, then we ask you call your version of CircuitPython something else (for example, SuperDuperPython) and not use the Blinka logo. You can say it is « CircuitPython-compatible » if most CircuitPython drivers will work with it.
Differences from MicroPython¶
CircuitPython:
Supports native USB on most boards and BLE otherwise, allowing file editing without special tools.
Floats (aka decimals) are enabled for all builds.
Error messages are translated into 10+ languages.
Concurrency within Python is not well supported. Interrupts and threading are disabled. async/await keywords are available on some boards for cooperative multitasking. Some concurrency is achieved with native modules for tasks that require it such as audio file playback.
Behavior¶
The order that files are run and the state that is shared between them. CircuitPython’s goal is to clarify the role of each file and make each file independent from each other.
boot.py
runs only once on start up before USB is initialized. This lays the ground work for configuring USB at startup rather than it being fixed. Since serial is not available, output is written toboot_out.txt
.code.py
(ormain.py
) is run after every reload until it finishes or is interrupted. After it is done running, the vm and hardware is reinitialized. This means you cannot read state fromcode.py
in the REPL anymore, as the REPL is a fresh vm. CircuitPython’s goal for this change includes reducing confusion about pins and memory being used.After the main code is finished the REPL can be entered by pressing any key.
Autoreload state will be maintained across reload.
Adds a safe mode that does not run user code after a hard crash or brown out. This makes it possible to fix code that causes nasty crashes by making it available through mass storage after the crash. A reset (the button) is needed after it’s fixed to get back into normal mode.
RGB status LED indicating CircuitPython state.
Re-runs
code.py
or other main file after file system writes over USB mass storage. (Disable withsupervisor.disable_autoreload()
)Autoreload is disabled while the REPL is active.
Main is one of these:
code.txt
,code.py
,main.py
,main.txt
Boot is one of these:
boot.py
,boot.txt
API¶
Unified hardware APIs. Documented on ReadTheDocs.
API docs are Python stubs within the C files in
shared-bindings
.No
machine
API.
Modules¶
No module aliasing. (
uos
andutime
are not available asos
andtime
respectively.) Insteados
,time
, andrandom
are CPython compatible.New
storage
module which manages file system mounts. (Functionality fromuos
in MicroPython.)Modules with a CPython counterpart, such as
time
,os
andrandom
, are strict subsets of their CPython version. Therefore, code from CircuitPython is runnable on CPython but not necessarily the reverse.tick count is available as time.monotonic()
Project Structure¶
Here is an overview of the top-level source code directories.
Core¶
The core code of MicroPython is shared amongst ports including CircuitPython:
docs
High level user documentation in Sphinx reStructuredText format.drivers
External device drivers written in Python.examples
A few example Python scripts.extmod
Shared C code used in multiple ports” modules.lib
Shared core C code including externally developed libraries such as FATFS.logo
The CircuitPython logo.mpy-cross
A cross compiler that converts Python files to byte code prior to being run in MicroPython. Useful for reducing library size.py
Core Python implementation, including compiler, runtime, and core library.shared-bindings
Shared definition of Python modules, their docs and backing C APIs. Ports must implement the C API to support the corresponding module.shared-module
Shared implementation of Python modules that may be based oncommon-hal
.tests
Test framework and test scripts.tools
Various tools, including the pyboard.py module.
Ports¶
Ports include the code unique to a microcontroller line.
Supported |
Support status |
---|---|
atmel-samd |
|
cxd56 |
stable |
espressif |
|
litex |
alpha |
mimxrt10xx |
alpha |
nrf |
stable |
raspberrypi |
stable |
stm |
|
unix |
alpha |
stable
Highly unlikely to have bugs or missing functionality.beta
Being actively improved but may be missing functionality and have bugs.alpha
Will have bugs and missing functionality.
Boards¶
Each
port
has aboards
directory containing variations of boards which belong to a specific microcontroller line.A list of native modules supported by a particular board can be found here.
Full Table of Contents¶
- Core Modules
- Modules
_bleio
– Bluetooth Low Energy (BLE) communication_eve
– Low-level BridgeTek EVE bindings_pew
– LED matrix driver_stage
– C-level helpers for animation of sprites on a stage_typing
– Types for the C-level protocolsadafruit_bus_device
– Hardware accelerated external bus accessadafruit_pixelbuf
– A fast RGB(W) pixel buffer library for like NeoPixel and DotStaraesio
– AES encryption routinesalarm
– Alarms and sleepanalogio
– Analog hardware supportatexit
– Atexit Moduleaudiobusio
– Support for audio input and output over digital busesaudiocore
– Support for audio samplesaudioio
– Support for audio outputaudiomixer
– Support for audio mixingaudiomp3
– Support for MP3-compressed audio filesaudiopwmio
– Audio output via digital PWMbitbangio
– Digital protocols implemented by the CPUbitmaptools
– Collection of bitmap manipulation toolsbitops
– Routines for low-level manipulation of binary databoard
– Board specific pin namesbusio
– Hardware accelerated external bus accesscamera
– Support for camera inputcanio
– CAN bus accesscountio
– Support for edge countingdigitalio
– Basic digital pin supportdisplayio
– Native helpers for driving displaysdualbank
– DUALBANK Moduleespidf
fontio
– Core font related data structuresframebufferio
– Native framebuffer display drivingfrequencyio
– Support for frequency based protocolsgamepadshift
– Tracks button presses read through a shift register.getpass
– Getpass Modulegifio
– Access GIF-format imagesgnss
– Global Navigation Satellite Systemi2cperipheral
– Two wire serial protocol peripheralimagecapture
– Support for « Parallel capture » interfacesipaddress
is31fl3741
– Displays an in-memory framebuffer to a IS31FL3741 drive display.keypad
– Support for scanning keys and key matricesmath
– mathematical functionsmemorymonitor
– Memory monitoring helpersmicrocontroller
– Pin references and cpu functionalitymsgpack
– Pack object in msgpack formatmultiterminal
– Manage additional terminal sourcesneopixel_write
– Low-level neopixel implementationnvm
– Non-volatile memoryonewireio
– Low-level bit primitives for Maxim (formerly Dallas Semi) one-wire protocol.os
– functions that an OS normally providesparalleldisplay
– Native helpers for driving parallel displaysps2io
– Support for PS/2 protocolpulseio
– Support for individual pulse based protocolspwmio
– Support for PWM based protocolsqrio
rainbowio
random
– pseudo-random numbers and choicesrgbmatrix
– Low-level routines for bitbanged LED matricesrotaryio
– Support for reading rotation sensorsrp2pio
– Hardware interface to RP2 series” programmable IO (PIO) peripheral.rtc
– Real Time Clocksamd
– SAMD implementation settingssdcardio
– Interface to an SD card via the SPI bussdioio
– Interface to an SD card via the SDIO bussharpdisplay
– Support for Sharp Memory Display framebufferssocketpool
ssl
storage
– Storage managementstruct
– Manipulation of c-style datasupervisor
– Supervisor settingssynthio
– Support for MIDI synthesisterminalio
– Displays text in a TileGridthingz
– Thingz modulethingz_accel
– Thingz accelerometerthingz_button
– Thingz buttonthingz_button_touch
– Thingz button touchthingz_display
– Thingz Displaythingz_led
– Thingz LEDthingz_radio
– Thingz Radiothingz_sound
– Thingz Soundtime
– time and timing related functionstouchio
– Touch related IOtraceback
– Traceback Moduleuheap
– Heap size analysisulab
– Manipulate numeric data similar to numpyusb_cdc
– USB CDC Serial streamsusb_hid
– USB Human Interface Deviceusb_midi
– MIDI over USBustack
– Stack information and analysisvectorio
– Lightweight 2D shapes for displayswatchdog
– Watchdog Timerwifi
help()
– Built-in method to provide helpful information
- Modules
- Supported Ports
- Troubleshooting
- Additional CircuitPython Libraries and Drivers on GitHub