ulab.scipy.optimize¶
- ulab.scipy.optimize.bisect(fun: Callable[[float], float], a: float, b: float, *, xtol: float = 2.4e-07, maxiter: int = 100) float¶
- Paramètres:
Find a solution (zero) of the function
f(x)on the interval (a..``b``) using the bisection method. The result is accurate to withinxtolunless more thanmaxitersteps are required.
- ulab.scipy.optimize.fmin(fun: Callable[[float], float], x0: float, *, xatol: float = 2.4e-07, fatol: float = 2.4e-07, maxiter: int = 200) float¶
- Paramètres:
Find a minimum of the function
f(x)using the downhill simplex method. The locatedxis withinfxtolof the actual minimum, andf(x)is withinfatolof the actual minimum unless more thanmaxitersteps are requried.
- ulab.scipy.optimize.newton(fun: Callable[[float], float], x0: float, *, xtol: float = 2.4e-07, rtol: float = 0.0, maxiter: int = 50) float¶
- Paramètres:
Find a solution (zero) of the function
f(x)using Newton’s Method. The result is accurate to withinxtol * rtol * |f(x)|unless more thanmaxitersteps are requried.